Evaluating Comprehensive Track Inspection Vehicles for Transit Operations

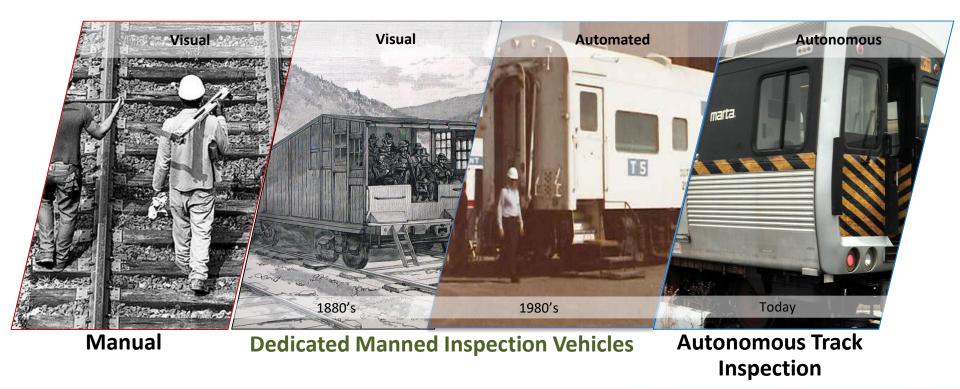
Bob Coakley ENSCO Rail, Inc. June 18, 2019

JUNE 18.

Evaluating Comprehensive Track Inspection Vehicles for Transit Operations

- History & Evolution of Track Inspection
- Comprehensive Track Inspection Vehicle Platforms

- Typical Comprehensive Track Inspection Systems
- Future of Track Inspection


Key Presentation Take-Aways

- The Value of Comprehensive Track Inspection Vehicles....more effective and efficient when compared to single use Track Inspection Vehicles
- The Future of Track Inspection....emergence of Autonomous Track Inspection and Automated Data Management Technologies provide for next level improvements including:
 - Earlier identification of anomalies through more frequent inspections;
 - More efficient inspections at much lower overall costs;
 - Planned maintenance instead of reactive maintenance, resulting in fewer emergency repairs and slow orders.

History & Evolution of Track Inspection

RAIL TRANSIT SEMINAR . JUNE 18, 2019

Comprehensive Track Inspection Vehicles

Multiple Inspection Technologies installed onboard a single track inspection vehicle

PROS

- Lower Cost of Implementation (Single Vehicle vs. Multiple Vehicles)
- Reduced Track Occupation Time as multiple test conducted simultaneously
- Data Alignment as all data referenced back to common GPS/Localization.

<u>CONS</u>

- Vehicle downtime impacts all systems
- Special considerations needed to collect data at the same speed (Ultrasonic and Track Geometry on same vehicle)

5

Comprehensive Vehicle Platforms

Comprehensive Vehicle Platforms

Hi-Rail Manned

Road/Rail Travel

Maximum Flexibility on Distributed Network **Railbound Manned**

Maximum space for multiple systems.

Self-Propelled: Survey routing flexibility

Towed Coach: Maximum speed at lower costs

Autonomous

Lowest vehicle costs (revenue vehicles)

Lowest operational and maintenance costs

WRI 20219

RAIL TRANSIT SEMINAR . JUNE 18, 2019

Sample Hi-Rail Inspection Vehicle Layout

Sample Hi-Rail Inspection Vehicle Layout

RAIL TRANSIT SEMINAR • JUNE 18, 2019

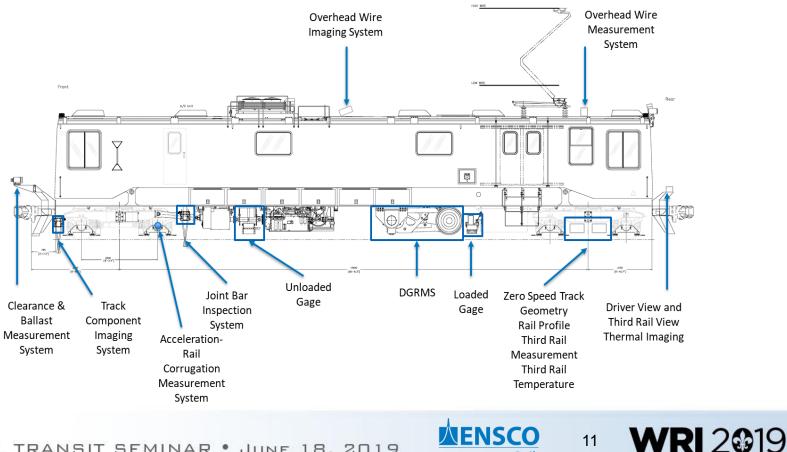
9

WRI 2**0**19

Sample Self-Propelled Railbound Vehicles

Four Axle

Two Axle



Two Axle

Sample Railbound Inspection Vehicle Layout

Rail

US – Washington D.C.

Eight (8) Inspection Systems Onboard:

- Zero-Speed Track Geometry
- Rail Profile
- Third Rail
- Thermal Imaging
- Ultrasonic Rail Flaw
- Track Circuit Signal Measurement
- Driver View Imaging
- Platform Edge Measurement

US- New Jersey Four (4) Inspection Systems Onboard:

12

WRI 2019

- Track Geometry
- Rail Profile
- Driver View Imaging
- Joint Bar Imaging

US - East Coast Five (5) Inspection Systems Onboard various vehicles:

- Track Geometry
- Rail Profile
- Ride Quality
- Right of Way Video
- GRMS

US – New York City

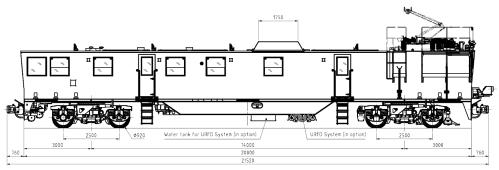
Eleven (11) Inspection Systems Onboard:

- Zero Speed Track Geometry
- Rail Profile
- Third Rail
- Driver View, Overhead View, Track Component and Joint Bar Imaging Systems
- Gauge Restraint Measurement
- Rail Corrugation
- Clearance Measurement
- Overhead Wire Measurement

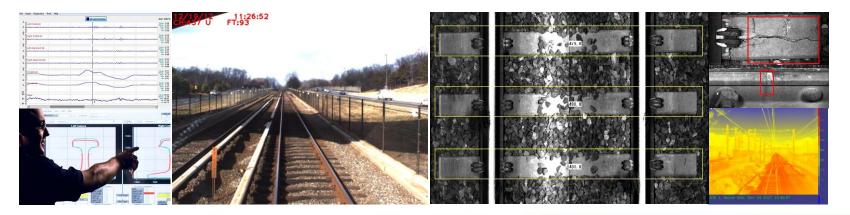
US – New York City Nine (9) Inspection Systems Onboard:

- Zero Speed Track Geometry
- Rail Profile
- Third Rail
- Ultrasonic Rail Flaw
- Rail Corrugation
- Clearance Measurement
- Driver View, Rail Surface and Thermal Imaging

Canada – Toronto Six (6) Inspection Systems Onboard:


- Driver View Imaging (Infrared)
- Thermal Imaging
- Third Rail Imaging
- Joint Bar Imaging
- Rail Surface Imaging
- Track Component Imaging

Australia – Brisbane Eight (8) Inspection Systems Onboard:


- Zero-Speed Track Geometry
- Rail Profile
- Driver View Imaging
- Track Component Imaging
- OH Wire Inspection
- OH Wire Imaging
- Structure Clearance
- Rail Corrugation

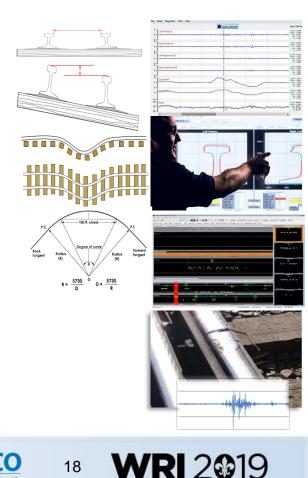
Australia - Melbourne Eleven (11) Inspection Systems Onboard:

- Zero-Speed Track Geometry
- Rail Profile
- Driver View Imaging
- Track Component Imaging
- Joint Bar Imaging
- Rail Surface Imaging
- OH Wire Measurement
- OH Wire Imaging
- OH Wire Thermal Imaging
- Clearance Measurement
- Rail Corrugation

Typical Comprehensive Track Inspection Systems

RAIL TRANSIT SEMINAR . JUNE 18, 2019

17


WRI 2019

Track Measurement Systems

- Track Geometry Measurement*
- Rail Profile Measurement*
- Vehicle/Track Interaction Monitor (V/TI)*
- Ride Quality Measurement System*
- Overhead Wire Measurement System*
- Third Rail Measurement System*
- Rail Corrugation Measurement System*
- Signal and Communication Measurement System*
- Deployable Gage Restraint Measurement Systems
- Clearance & Ballast Measurement System
- Ground Penetrating Radar
- Ultrasonic Rail Flaw Detection (RFD)
- * Indicates can be deployed Autonomously

RAIL TRANSIT SEMINAR • JUNE 18, 2019

Rail

Zero-Speed Track Geometry Measurement (Z-TGMS) **Rail Profile Measurement (RPMS)** Third Rail Measurement (TRMS)

Modern Key Features:

- All systems are included in one assembly
- Inertial, non-contact ٠
- Measures all Parameters to zero-speed

19

Rail

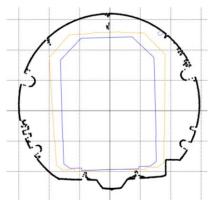
Laser Based Rail Corrugation Measurement System (L-RCMS) Acceleration Based Rail Corrugation Measurement System (A-RCMS)

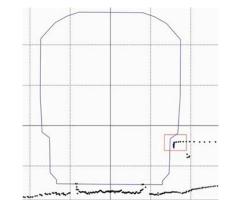
Laser Based - Modern Key Features:

- Highest Accuracy
- Multiple wavelength bands for corrugation RMS, Peak-to-Peak, and Space Curve

Acceleration Based - Modern Key Features:

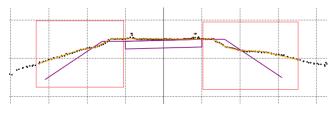
- Lower cost
- Non-optical




Clearance and Ballast Measurement System (CBMS)

Modern Key Features:

- Lidar lasers
- Onboard clearance encroachment exception detection



Tunnel Clearance

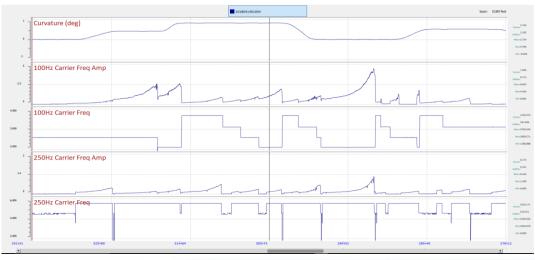
Station Platform Clearance

Ballast Profile

21

RAIL TRANSIT SEMINAR . JUNE 18, 2019

Rail

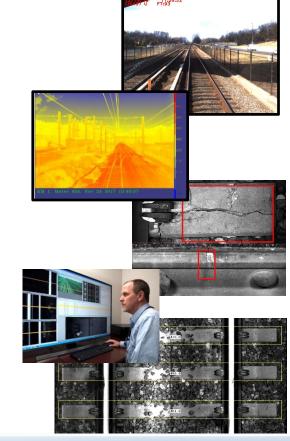


Signal and Communication Inspection System (SCIS)

Modern Key Features:

- Measures AC Track Circuits, Train Control Signaling and Wayside Transponders
- Detects train control and signaling deficiencies

Rail


22

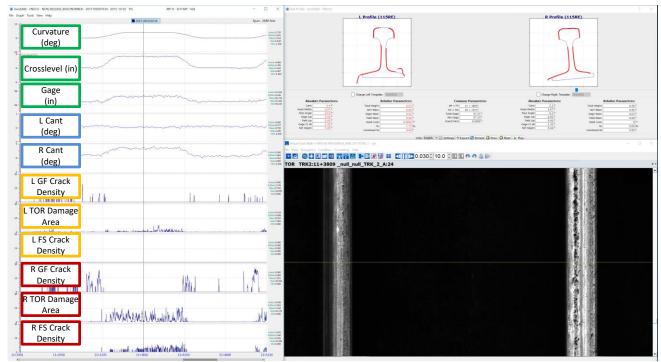
WRI 2**0**19

Track Imaging Systems

- Rail Surface Imaging*
- Track Component Imaging*
- Joint Bar Imaging System*
- Thermal Imaging*
- Third Rail (Power Rail) Imaging System*
- Driver View Imaging
- Overhead Wire Imaging

RI 20019

* Indicates can be deployed Autonomously


RAIL TRANSIT SEMINAR . JUNE 18, 2019

Rail Surface Imaging System (RSIS)

Modern Key Features:

- Strip chart measurement
- RCF Density
- Surface Damage Area
- Synchronized with rail wear data

MFNS

Rail

WRI 2**0**19

24

Patent Pending

Track Component Imaging System (TCIS)

Modern Key Features:

- Strip chart measurement ٠
- Ballast texture measurement ٠
- Fouled ballast detection

RAIL

Rail

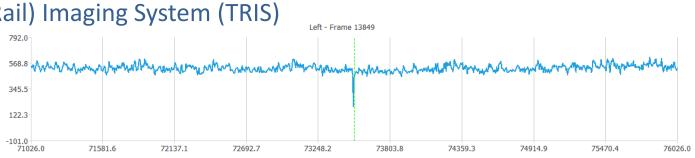
Track Component Imaging System (TCIS) Joint Bar Imaging System (JBIS)

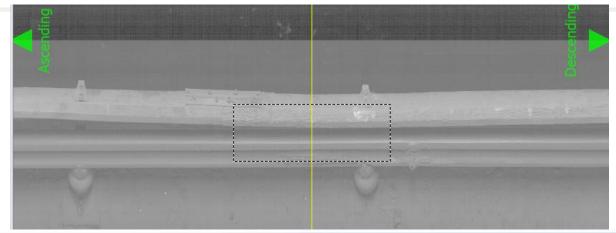
Modern Key Features:

- Trained algorithms to identify component defects
- Missing Fasteners
- Broken Rail
- Broken/Cracked Joint Bars
- Missing Joint Bar Bolts
- Synchronized with all other systems

26

Rail


WRI 20019


TRANSIT SEMINAR .

Third Rail (Power Rail) Imaging System (TRIS)

Modern Key Features:

- Low Coverboard Detection
- Trained algorithms to identify component defects
- Synchronized with all other systems.

WRI 2019

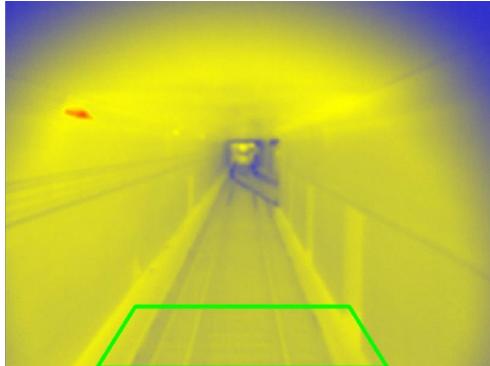
27

Rail

Patent Pending

8,2019

JUNE

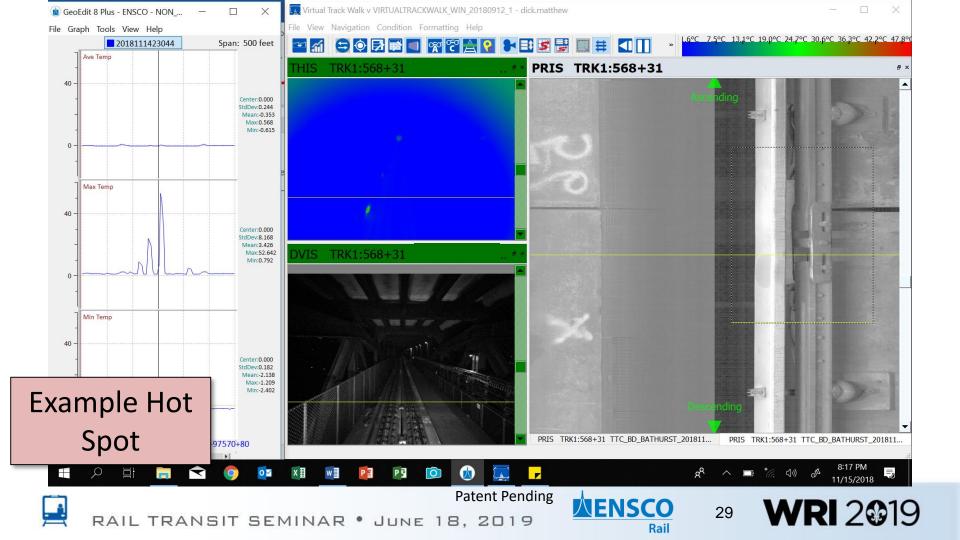


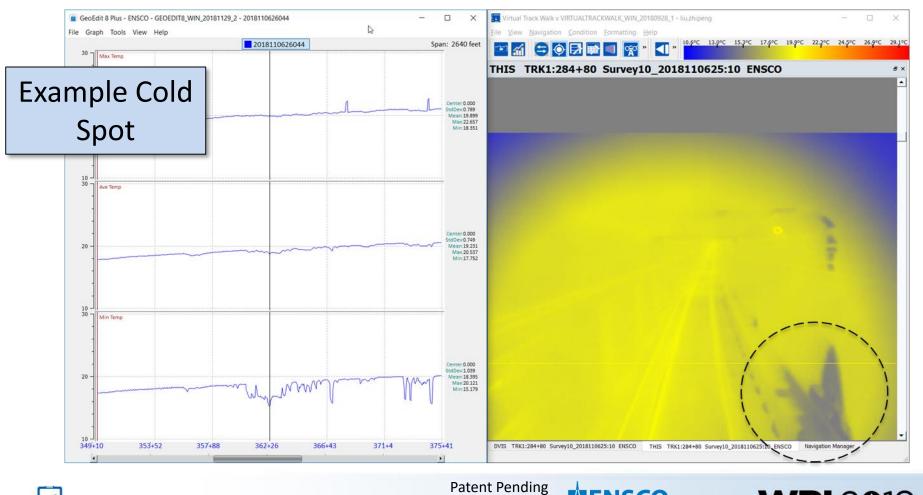
Thermal Imaging System (THIS)

• Window of Interest (WOI) Box is used.

NSIT SEMINAR .

• Maximum, Minimum and Average Temperatures within the WOI are made into strip chart.




Patent Pending

JUNE 18, 2019

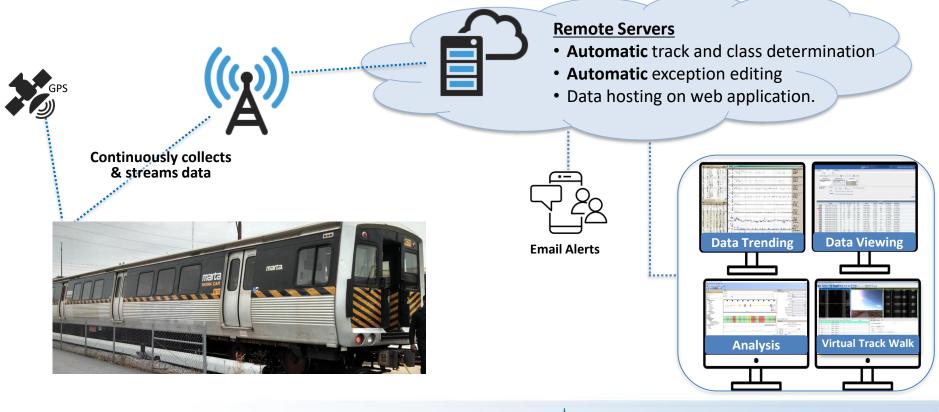
RAIL TRANSIT SEMINAR . JUNE 18, 2019

Autonomous Track Inspection

The Future of Track Condition Monitoring

What is Autonomous Inspection?

Autonomous Inspection – Process of inspecting the track from revenue service trains using unattended instrumentation with minimal direct involvement.



Typical Autonomous System Architecture

RAIL TRANSIT SEMINAR . JUNE 18, 2019

33

WRI 2**0**19

Autonomous Track Inspection

PROS

- Earlier identification of anomalies through more frequent inspections;
- More efficient inspections at much lower overall costs;
- Autonomous Algorithms standardize application of business rules
- Automated notifications via email

<u>CONS</u>

• Maintenance of systems requires coordination with rolling stock & transportation.

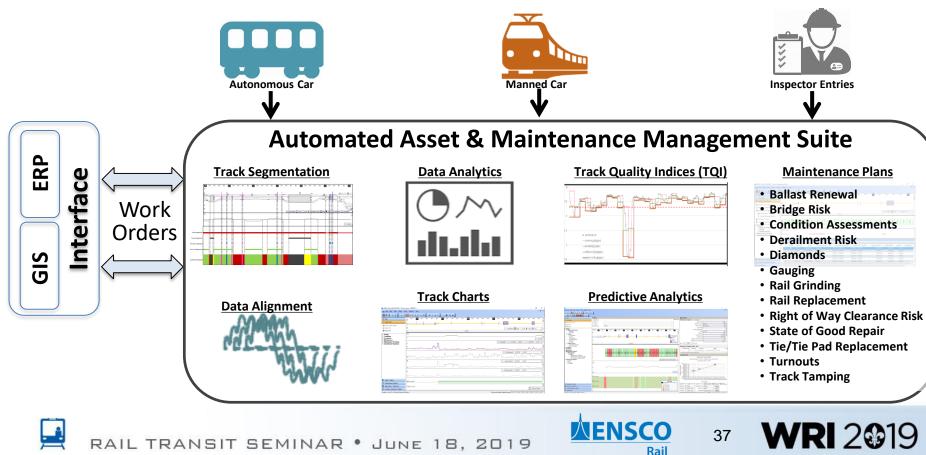
Every train movement presents an opportunity to assess the vehicle and track system.

Automated Asset and Data Management & & Predictive Analytics

Moving from REactive to PROactive

Automated Asset & Data Management

PROS


- Turns data into actionable information.
- Uses latest statistical methodology to assess track & asset condition and develop comprehensive asset management plans.
- Plans and prioritizes maintenance activities based on risk resulting in fewer emergency repairs and slow orders.
- Prioritizes capital and operating investment based on risk and needs.
- Provides an Automated End-to-End Solution when coupled with Autonomous Inspection Systems.

<u>CONS</u>

- Requires investment in data analysis
- Requires commitment to process and process discipline to turn data into action.

Automated Asset & Data Management

Final Thoughts

- Comprehensive Track Inspection Vehicles are more effective and efficient when compared to single use Track Inspection Vehicles
- The emergence of Autonomous Track Inspection and Data Management Technologies provide for next level improvements including:
 - Earlier identification of anomalies through more frequent inspections;
 - More efficient inspections at much lower overall costs;
 - Planned maintenance instead of reactive maintenance, resulting in fewer emergency repairs and slow orders.

Thank You

Questions?

